
Decentralized Storage on Large Dynamic

Datasets with Applications for Large

Decentralized KV Store

Qi Zhou, v0.1.6 draft

Oct. 3, 2022

Abstract

Decentralized storage on large dynamic datasets is one key challenge
for future blockchains with large-scale applications. In this paper, we
propose a dynamic data sharding to address the problem, especially its
sub-problems such as proof of publication, proof of storage, and proof
of retrievability. We apply the dynamic data sharding to a decentral-
ized KV store on top of an EVM-compatible blockchain, and our early
analysis suggests that the cost of storing large values can be reduced to
≈ 1/1000x compared to the fully-replicated EVM-native KV store via
SSTORE opcode while ensuring tens or hundreds of replicas of the values
in the network.

Contents

1 Introduction 3

2 Semantics of the KV Store 4

3 Data Structure of the KV Store 5
3.1 Metadata of the KV Store . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Storage Layout of Value Data . . . . . . . . . . . . . . . . . . . . 6

4 Proof of Storage on Large Dynamic Datasets 7
4.1 Fee Model for Storage . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Proof of Replication . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Estimated Replicas . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Other Limitations and Optimizations 10
5.1 Dynamically Creating a New Shard . . . . . . . . . . . . . . . . . 10
5.2 Limitations on get() . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Limitations on remove() . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Storage Capacity of the Network . . . . . . . . . . . . . . . . . . 13

1



5.5 Optimization on Uploading . . . . . . . . . . . . . . . . . . . . . 13
5.6 Optimization on the Operational Cost of a Node . . . . . . . . . 14
5.7 Synchronizing Value Data . . . . . . . . . . . . . . . . . . . . . . 14

6 Attack Vectors 14
6.1 Overestimate of Replicas with Partial Replicas . . . . . . . . . . 14
6.2 Overestimate of Replicas with Advanced Mining Machine . . . . 15
6.3 Unfair Mining Advantage with Attacker Generated Data . . . . . 15
6.4 Front-Running Attack . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Conclusion 16

2



1 Introduction

One of the key challenges of future blockchains is storing a large amount of dy-
namic data that far exceeds the capacity of a single node. The storage problem
can be generally divided into the following sub-problems:

• Proof of Publication, which ensures that the data show up on the
network initially and the nodes can choose to download and store the
data of interest or just ignore the data;

• Proof of Storage, which ensures that the data is stored somewhere in
the network and prevents losing the data;

• Proof of Retrievability, which ensures that anyone can retrieve the
data in the presence of some malicious nodes that withhold the data.

In this paper, we propose a dynamic data sharding to achieve decentralized
storage on large dynamic datasets with applications for large decentralized key-
value (KV) store on top of an EVM-compatible blockchain. The KV store
maintains two data structures

• Metadata of the KV store, which is maintained in the on-chain KV
contract and is fully replicated to all the nodes in the network;

• Values of the KV store, which are partitioned into multiple fixed-
size shards. Each node may host zero or multiple shards and claim the
rewards of each shard by submitting proof of storage periodically. When
the number of KV entries increases, the shards will be dynamically created
to serve new values of KV entries.

The key to achieving decentralized storage on large dynamic datasets is to
build an on-chain oracle of the estimate of the number of replicas of each shard
and then to reward those nodes that prove the replication of the shard over
time. When a node is launched, the node operator is free to choose the shards
(or no shards) to host, most likely depending on the shards that will offer the
best-expected rewards, i.e., shards with a lower number of replicas based on the
oracle. The reward of each shard is distributed to the nodes that can prove the
replication of the shard via proof of random access (PoRA).

The PoRA is a mining process that heavily relies on read IOs that are per-
formed over the shard data. Similar to the proof of work mining, the KV
store contract maintains a dynamic difficulty parameter for each shard and ad-
justs the parameter after accepting the submission result of the PoRA (a.k.a.,
a mini-block). Therefore, we could estimate the number of replicas of the shard
by calculating the hash rate, i.e., read IO rate, vs the read IO rate of most
mining-economical storage devices (e.g., 1TB NVME SSD).

When some nodes of the shard leave the network, the hash rate of the shard
will decrease, and therefore new nodes are incentivized to join the shard in order
to receive better rewards. This dynamical procedure guarantees the replication
over time and thus prevents loss of the data, i.e., achieving proof of storage.

3



Further, we could adjust the token reward (paid by users) to guarantee some
levels of replication. Given the assumption that most of the nodes that run the
shard replicas are honest (in fact, 1-of-N is sufficient), then we could address
the data withholding attack from malicious nodes and thus achieve proof of
retrievability.

Our early economic analysis shows that with the dynamic data sharding, the
cost of storing KVs with large values can be decreased to ≈ 1/100x of the current
fully-replicated storage model in EVM (via SSTORE opcode) while ensuring
tens or hundreds of replicas based on the IO performance of the targeted storage
device.

The rest of paper are organized as follows. Section 2 describes the semantics
of the proposed KV store. Section 3.1 explains the data structures of the KV
store. Section 4 illustrates how to achieve proof of storage on large dynamic
datasets. Section 5 discusses some limitations and optimizations of the KV
store. Section 6 lists the attack vectors, and Section 7 concludes the paper.

2 Semantics of the KV Store

Consider an EVM-compatible blockchain network that supports the follow-
ing decentralized key-value operations in Solidity application-binary-interface
(ABI):

• put(bytes32 key, bytes memory value), which writes the key-value pair
to the underlying decentralized KV store. The size of the value must be
smaller than or equal to the maximum value size MAX VALUE SIZE defined
by the KV store. The value of MAX VALUE SIZE per-KV-store could be
much larger than the existing Ethereum storage model (32 bytes), which
ranges from a few kilobytes to hundreds of kilobytes;

• get(bytes32 key, uint256 off, uint256 len) returns (bytes memory),
which returns the value of the key from range [off, off+len). If the key
is not found, it will return an empty bytes.

• remove(bytes32 key), which removes the key-value pair from the KV
store.

• verify(bytes32 key, bytes memory value) returns (bool), which re-
turns whether the value matches the underlying stored value.

To interact the KV store with the operations, an account (either externally
owned or contract account) can call the KV store contract deployed at a specific
address (e.g., 0x333001) with supplied parameters.

Note that we are expecting to support a very large amount of key-value pairs
in the store. Therefore,

4



• each node maintains the full metadata of the KV store, which provides
necessary functionalities such as ownership management, the key to phys-
ical address translation, and the hashes of values for integration check.
The details of the metadata will be explained in Sec. 3.1.

• the actual values are stored in a large byte array. Since the array may
contain tens or hundreds of Terabytes or even Petabytes of data, the con-
tent of the array will be partitioned into multiple shards that are hosted
by different nodes in the network. The details of the value data storage
will be explained in Sec. 3.2.

3 Data Structure of the KV Store

3.1 Metadata of the KV Store

The metadata of the KV store maintains two mapping in the contract:

• mapping from skey → physical addr, where

– skey = keccak256(msg.sender, key) is the actual storage key of
the KV pair. Note that, even though all accounts share the same
storage key space, since keccak256() hash function is cryptographi-
cally collision-free, we can safely assume that the storage keys derived
from different accounts will never collide. As the result, the mapping
implements a simple data ownership management, where each ac-
count will control its KV entries with the keys in a non-overlapping
sub-space.

– physical addr is a tuple of

(uint40 kv idx, uint24 kv size, bytes24 hash), (1)

where kv idx is a unique index of the key-value pair , kv size is
the size of the value, and hash is the hash of the value of the pair.
The sum of the sizes of the tuple is 256 bits (32 bytes), which can be
stored in a single storage slot of the contract.

• mapping from kv idx → skey, which maintains the reserve lookup from
the index of a KV pair to its storage key.

When the put operation is called, the contract will do the following

1. Calculate skey = keccak256(msg.sender, key) and find if the storage
key already exists.

2. If the KV pair of the storage key does not exist, then let kv idx = number

of KV entries, otherwise kv idx = existing index of the KV entry.

3. Calculate new physical addr and update the mapping.

5



// Write a large value to KV store.

// If the KV pair exists, overrides it.

// Otherwise, will append the KV to the KV array.

function put(bytes32 key, bytes memory data) public {

bytes32 skey = keccak256(abi.encode(msg.sender, key));

PhyAddr memory paddr = kvMap[skey];

if (paddr.hash == 0) {

// Append case

paddr.kvIdx = lastKvIdx;

idxMap[paddr.kvIdx] = skey;

lastKvIdx = lastKvIdx + 1;

}

paddr.kvSize = uint24(data.length);

paddr.hash = bytes24(keccak256(data));

kvMap[skey] = paddr;

// (Optionally) Write the value to the underlying data file

}

Figure 1: Example Code of Updating Metadata in put()

4. (Optionally) Store the value at kv idx’th entry of data file.

An example code of updating metadata of the KV store can be found in Fig.
1.

3.2 Storage Layout of Value Data

The values of all KV entries are stored in a large byte array, i.e., a large-size
file. Given the index of the KV entry kv idx, the value will be written at the
following position of the file

[kv idx× MAX KV SIZE, kv idx× MAX KV SIZE+ length of value) (2)

where the range [kv idx× MAX KV SIZE, (kv idx+ 1)× MAX KV SIZE) is re-
served for the value of the KV entry for future in-place modification.

Since the file can be potentially huge, the content of the file is partitioned
into multiple physical shards. Each shard contains the bytes of the file in the
range

[shard id× SHARD SIZE, (shard id+ 1)× SHARD SIZE), (3)

where shard id is the index of the shard, and SHARD SIZE is the number of
bytes per shard defined as

6



SHARD SIZE = MAX VALUE SIZE× KV ENTRIES PER SHARD, (4)

which is configured by the KV store and the value of SHARD SIZE should be
fit into the per-node capacity with a few Terabytes.

Therefore, given the index of a KV entry, kv idx, the corresponding shard
index of the entry is

shard id =

⌊
kv idx

KV ENTRIES PER SHARD

⌋
. (5)

When a node is launched, the node operator will be incentivized to configure
the preferred shards that the node will serve. When a put operation is called,
the node can determine whether the value of the KV entry should be stored
locally given kv idx of the entry and Eq. (5). If the KV entry does not belong
to the shards of the node, the node will just discard the value.

One key problem of the sharding model is how to guarantee that the data
of each shard is replicated with sufficient numbers so that

• (Proof of Storage) Even if some nodes that hold the shard data leave
the network permanently, new nodes or the existing nodes are incentivized
to join the shard, download the data, and serve the data in the network.
This prevents the loss of data in the network.

• (Proof of Retrievability) The replication number is high enough that
there exists (in a high probability) some honest nodes for the shard that
will altruistically share its shard data with other nodes in the presence of
malicious nodes withholding the data.

In the following sections, we will discuss how to address the issues.

• Section 4.1 describes the fee model for storing the KV data.

• Section 4.2 describes how a node with the shard data can prove its repli-
cation and claim rewards.

• Section 4.3 describes the estimated replication factor given some parame-
ters of the fee model and physical storage cost.

4 Proof of Storage on Large Dynamic Datasets

4.1 Fee Model for Storage

To store the data in the proposed decentralized KV store, the user has to pay
the storage cost to the nodes that host the shard data and to ensure sufficient
replication factor. Here, we implement a storage rental model with discounted

7



payment flow model. At time Tp (in seconds), the upfront payment of a first
put() is

p = c

∞∑
t=Tp

dt−T0 (6)

=
cdTp−T0

1− d
(7)

= xdTp−T0 , (8)

where T0 is the genesis time of the KV store, d is the discount rate in seconds,
which reflects the decreasing cost of storage over time vs payment token, c a
constant to adjust base payment, and x = c/(1− d) is the upfront payment at
genesis time. When the user puts the same key and replace the value, we will
not charge the storage rental cost again (normal gas fee is still charged).

The payment can be refunded if the KV entry is removed. Suppose the
removal time is Tr, then the refund will be

r = c

∞∑
t=Tr

dt−T0 (9)

= xdTr−T0 . (10)

As a result, for the time interval [Tp, Tr], the user rents the storage and pays
the rental fee as

f = p− r (11)

= x(dTp−T0 − dTr−T0), (12)

which can be computed efficiently in smart contracts.

4.2 Proof of Replication

To incentivize nodes to host the data of each shard, we employ a proof of
replication algorithm based on proof of random access. The goal of proof of
random access is to provide an on-chain oracle about the number of read IOs
(in terms of MIN IO SIZE, e.g., 4096 for most SSDs) are performed over the
shard data over time. For example, suppose that the oracle reports 10,000,000
4KB read IO/s and a normal NVME SSD can offer 500,000 4KB read IO/s,
then we could estimate about 20 disks that are hosting the shard data in the
network.

To estimate the read IO rate, each node hosting the shard data will perform
a mining by randomly reading the shard data as follows.

1. Based on a nonce and the last mining hash, randomly pick up N RANDOM ACCESS

positions in the range of

[0, SHARD SIZE/MIN IO SIZE) (13)

8



2. Read the data from the shard at range

[pi × MIN IO SIZE, (pi + 1)× MIN IO SIZE), (14)

where pi, i ∈ {1, ..., N RANDOM ACCESS} are the random positions generated
from Step 1.

3. Mix the randomly read data (e.g., simply XOR the data read from random
positions) and calculate the final hash H

4. Check if ⌊
2256 − 1

H

⌋
≥ Di (15)

where Di is the difficulty of the shard.

5. If Eq. (15) is satisfied, submit the mining result as an EVM transaction to
the KV store contract, which will verify the result with on-chain metadata
and send the rewards over [Tprev, T ] following Eq. (11) as

x(dTprev−T0 − dT−T0)ni, (16)

where Tprev is the timestamp of the previous submission, T is the current
timestamp, and ni is the number of the KV entries paid in the shard i.
The difficulty of the shard Di is automatically adjusted by the KV store
contract given the submission internal T − Tprev and target submission
interval Ttarget similar to Ethash difficulty adjustment algorithm.

6. Repeat Step 1.

As the result, the IO rate of the shard in the network can be estimated as

Di × N RANDOM ACCESS

Ttarget
, (17)

which can be served as an on-chain oracle.

4.3 Estimated Replicas

In this subsection, we study the estimated number of physical replicas. Firstly,
the cost of hosting and mining 1TB data is analyzed as follows.

• MAX VALUE SIZE = 4096 bytes

• SHARD SIZE = 1TB = 10244 bytes

• Cost of storage is $100 (e.g., Samsung 970 EVO Plus with 1TB), amortized
over 4 years with yearly cost = $25

• Yearly power cost = 6W× 24× 365 = 52.56kWh ≈ $26.28 @ $0.5 per kWh

• Total yearly cost $51.28

9



The reward distributed to the nodes that host the replicas of the shard
depends on upfront payment x, discount rate d, and token price. For simplicity,
we use a ETH-like token with 18 decimals (in the unit of Wei), and analyze the
first year reward with the following parameters

• x = 0.0001 TOKEN = 1014Wei, i.e., per-byte storage cost is 1014/4096 =
24.4Gwei. As a comparison, the current Ethereum storage cost per-byte
via SSTORE opcode is

20000/32× gas price, (18)

which means that SSTORE will have the same or lower storage cost if
gas price ≤ 0.039Gwei, which is far lower than current average gas price
of Ethereum mainnet, which is around 20Gwei.

• Yearly discount = d365×24×3600 = 0.9

• First year token rewards = (1−yearly discount)×0.0001×10244/4096 =
2684.35456 tokens

• Profit margin = 50%

As a result, the estimated replicas of the first year can be obtained as

replicas =
first year rewards× token price× (1− profit margin)

yearly cost
(19)

Table 1 summarizes the estimated replicas given different values of token
prices.

Token price $1 $5 $10 $100
Estimate replicas 26.8 134.2 268 2680

Table 1: Estimated Replicas of a Shard.

5 Other Limitations and Optimizations

5.1 Dynamically Creating a New Shard

When the number of KV entries N is increased from i×KV ENTRIES PER SHARD

to i×KV ENTRIES PER SHARD+1, a new shard with id i+1 is dynamically created.
One issue with the new shard is that it may not have any node that is configured
to serve this shard at the time of creation due to the lack of incentive, i.e., no
mining reward just before its creation. This may result in losing the value of a
newly put KV entry in the new shard.

To address this issue, one solution is to pre-pay some amount of the KV
entries in the KV store contract, N PREPAID, such that the actual number of the
KV entries paid in the store is N + N PREPAID. This provides a grace period to

10



incentivize the nodes to join the shard to be created and mine the data (although
the shard may not contain any values, we will fill it with some random values
so that proof of random access can still work, See Section 6.3). As the result,
the number of paid KV entries in shard i, i.e., ni, (i ≥ 0) in Eq. 16 becomes

ni = min (KV ENTRIES PER SHARD, (N + N PREPAID)− i× KV ENTRIES PER SHARD)
(20)

5.2 Limitations on get()

Since the values of the KV entries are sharded in different nodes, a consensus
node may not be able to serve a get operation if it is called in a transaction of
a block. Because of this, we do not allow the get operation to be called in the
consensus execution, e.g., proposing a block or validating a block. However, a
transaction can include the value of the KV entry and verify it on-chain using
verify() method.

In addition, a contract can still call the get operation in the JSON-RPC
environment, e.g., via eth call JSON-RPC method. The input argument of a
JSON-RPC call may further include a list of values that the contract may read.
During the contract execution, if the values are not found in the argument, the
call will try to find the value data locally. If the local data file does not contain
the data either, the call will fail and return the error containing the expected
value (and its key and index) to supply. This allows the caller to find the values
from another node and repeat the process until the call is successful.

5.3 Limitations on remove()

Removing a KV entry generally requires moving the last value of the data file
to replace the value of the KV entry to be removed. The example code can be
found in Fig. 2.

One key issue is that the removal may perform a cross-shard data moving,
i.e., moving the value data from the last index of the value of the data file to
the index of the KV to be removed, where the values are in different shards.
Since a node may not serve both shards, the move may result in the loss of data
if no node serves both shards. To address this issue, we can have the following
methods:

• We only allow removing a KV entry in the last shard i, i.e.,

i = ⌊(N + N PREPAID)/KV ENTRIES PER SHARD⌋ (21)

and thus moving the data always happens in the same shard; or

• Removing cross-shard data must supply the value to be moved; or

• Appending the KV index in a free list in the contract and refunding the
users only when a put() operation removes the KV index from the free
list.

11



// Remove an existing KV pair to a recipient.

// Refund the remaining payment accordingly.

function remove(bytes32 key) public {

bytes32 skey = keccak256(abi.encode(msg.sender, key));

PhyAddr memory paddr = kvMap[skey];

uint40 kvIdx = paddr.kvIdx;

require(paddr.hash != 0, "KV not exist");

// Move last KV metadata to current KV

bytes32 lastSkey = idxMap[lastKvIdx - 1];

idxMap[kvIdx] = lastSkey;

kvMap[lastSkey].kvIdx = kvIdx;

// Clear the metadata of the removing KV

kvMap[skey] = PhyAddr({kvIdx: 0, kvSize: 0, hash: 0});

// Remove the last KV metadata

idxMap[lastKvIdx - 1] = 0x0;

lastKvIdx = lastKvIdx - 1;

// (Optional) Move the lastKvIdx’th data to kvIdx’th

// in local data file.

// Refund owner.

}

Figure 2: Example Code of Removing Metadata in remove()

12



5.4 Storage Capacity of the Network

The current storage capacity of the network is primarily limited by the ca-
pacity of storing the metadata, which will be fully replicated to all the nodes.
Each KV entry will consume 2 contract storage slots with 2 × (32 + 32) = 128
bytes. We further assume the overhead of the Partica Merkle Tree (MPT) of
the contract storage is about 2x, and thus the overhead of metadata is about
256 bytes per KV entry. Given the capacity of a node is about 2TB and differ-
ent MAX VALUE SIZE’s, we could estimate the storage capacity of the network in
Table 2.

MAX VALUE SIZE 4KB 16KB 64KB 256KB
Storage Capacity 32TB 128TB 512TB 2PB

Table 2: Network Storage Capacity with Different MAX VALUE SIZE’s.

Note that we may further increase the capacity by sharding the metadata
together with the KV data. Therefore, instead of storing all metadata on-chain,
we only need to maintain the Merkle root of the metadata/data for each shard
in the smart contracts. This will save a huge amount of fully-replicated data at
the cost of complicating the semantics of all KV operations (e.g., a put operation
will require additional Merkle proof).

5.5 Optimization on Uploading

Current uploading off-chain data will place the data in the calldata field of a
transaction. Considering the gas cost per byte in calldata is about 16, uploading
a large object will consume a significant amount of gas, e.g., a 256KB object
will take about 4 million gas.

One optimization of uploading is to use EIP-4488: Transaction calldata gas
cost reduction with total calldata limit. This will reduce the gas cost per byte in
calldata to 3, while setting the hard limit of block size to prevent the worst-case
attack.

A further optimization can use BlockShadow as proposed by Arweave and
compact blocks in BIP-152. The basic idea is that when announcing a new block,
the node only propagates a compact block that only contains the transaction
hashes. A node receiving the compact block can reconstruct the full block by
filling the transactions found in local memory pool. If some of the transactions
are missing in the pool, the receiving node will ask the source node for the trans-
actions with extra delays. Assuming that the nodes (especially the validators)
maintain the latest pending transactions in its memory pool, reconstructing the
full block from a compact block can be done with a high probability. As a result,
we may further increase the block size limit and decrease gas cost per byte in
calldata after implementing EIP-4488.

A long-term optimization is to employ the latest data availability (DA) tech-
nologies. For example, with danksharding, the upload speed of future Ethereum
will be about 2.66 MBps, which is about 20x of current Ethereum upload speed

13



(about . The benefit of DA is that the nodes do not need to download and
broadcast all the calldata - instead, every node can verify that any part of
data can be downloaded from the network via data availability sampling. This
model fits very well in our dynamic sharding model, where the nodes only need
to download the data of the shards of interest without download all of them.

5.6 Optimization on the Operational Cost of a Node

Current implementation based on Geth will store all historical blocks in the
local storage. Since uploading the data will put the data in the transactions,
maintaining all historical blocks can easily exceed per-node storage capacity as
the size of uploaded data grows. To bound the storage size of a consensus node,
EIP-4444: Bound Historical Data in Execution Clients can be implemented to
prune the historical blocks and to only maintain recent blocks. Assuming the
upload rate of the network is 2MB/s, limiting the historical block data to 1T
will ask the node to keep recent blocks of

10244/2/10242/24/3600 ≈ 6 days. (22)

5.7 Synchronizing Value Data

When a fresh node is launched with configured shards to serve, the node needs
to synchronize the values of the shards before the node could prove its replica-
tion via PoRA and claim rewards. To support efficient synchronization, we will
develop a devp2p sub-protocol to discover the nodes that serve the shard data
and synchronize the data. The synchronization part is similar to snapsync sub-
protocol in devp2p, where values are copied from the remote peers concurrently
to maximize the bandwidth and IOs.

6 Attack Vectors

6.1 Overestimate of Replicas with Partial Replicas

If a node stores partial data of a shard, it may still achieve the full hash rate by
skipping the random access of unstored data in Step 1 in Section 4.2. Therefore,
the full replicas in the network may be over-estimated since some nodes may not
maintain full replicas of the shard while mining at the full IO rate. To encourage
the nodes to fully synchronize the replica, we can adopt a Hashimoto-like mining
procedure:

• The random position pi depends on the data of previous position, i.e., the
data from the shard at range [pi−1×MIN IO SIZE, (pi−1+1)×MIN IO SIZE);

• We could further increase the value of N RANDOM ACCESS, which will de-
crease the success rate of PoRA exponentially. E.g., suppose N RANDOM ACCESS =

14



16 and the node only stores 90% of the data of the shard, then the success
rate of mining is

0.916 ≈ 0.1853 (23)

6.2 Overestimate of Replicas with Advanced Mining Ma-
chine

Another possible vulnerability of PoRA is the potential overestimation of the
replicas if mining machines with high IO bandwidth are employed. One example
of such a high bandwidth device is memory, which could be much faster than
SSDs. However, compared to 1TB NVME SSD (Samsung 970 EVO Plus) with
about $100 cost, the memory cost of 1TB is much higher (about 40x, e.g.,
256GB DDR4-3200 is about $1000, and we could safely assume 1TB memory
is about $4000). The copy bandwidth of such memory (measured in 1 byte
read and write) is about 12.8 GB/s, which is about 6x of 1TB NVME SSD
at 2GB/s (Samsung 970 EVO Plus with up to 550K 4KB random reads with
queue depth 32). As a result, using memory seems to be much less economically
efficient compared to NVME SSDs. The efficiency gap can be further increased
by increasing the size of the shard SHARD SIZE.

6.3 Unfair Mining Advantage with Attacker Generated
Data

If parts of the shard data are generated by an attacker (e.g., from a fast pseudo-
random number generator with a secret seed only known to the attacker), the
attacker can achieve a mining advantage when the attacker’s data is accessed in
PoRA. The attacker can generate the data in-flight without performing actual
IOs. If the percentage of the attacker’s hash power over total hash power of the
shard is greater than the percentage of the attacker’s generated data over the
shard data, then the attacker will have an unfair mining advantage over other
honest miners.

A way to address the problem is to adopt Dagger-like mining, where the
actual data stored on disk is

vi ⊕ DAGi (24)

where vi is the value of the ith KV entry, ⊕ is a bit-wise xor operator, and DAGi
is the ith item of a directed acyclic graph (DAG) data set. Similar to Ethash,
the DAG data set can be generated from a smaller cache, which allows light
verification for non-mining nodes.

6.4 Front-Running Attack

When a miner submits a transaction with a PoRA result to the contract, an
attacker can immediately detect the access positions of the submission when the
transaction is broadcast. If the attacker owns the KV entry corresponding to one

15



of the positions, then the attacker can invalidate the submission by modifying
the value of the KV entry before the transaction is included in the blockchain.

One way to address the attack is to allow a PoRA submission to use the
metadata of a recent block. Since the current Geth implementation maintains
the states of the recent blocks, reading the metadata in a recent block’s state
should have almost the cost as reading the metadata in the current state. This
gives a grace period that the miner can mine a recent snapshot of the values in
a shard until the snapshot expires.

7 Conclusion

In this paper, we proposed the decentralized storage solution for a large amount
of dynamic data with applications for a decentralized KV store. The proposed
solution fully replicas the KV store metadata on a smart contract of an EVM-
compatible blockchain, while partitioning the values of all KV entries into mul-
tiple shards. Each shard is incentivized to be replicated on multiple physical
disks to ensure redundancy. Our early estimation shows that the network ca-
pacity of the proposed solution can achieve tens or hundreds of Terabytes or
even Petabytes.

16


